Math Logic: Model Theory & Computability Lecture 25

Torthi theorem let
$$N := (W, 0, S, f, t)$$
. Then Th (N) is unt arithmetical, i.e.
Th $(W)^* := \{r^* r^* : V \neq re\}$ is not arithmetical.
Proof. Fillows inmediately by an application of the based point lemma, let as $(W)^*$.
Now let $T \leq Th(M)$ be a compatable theory. Thus we are used expresses
 $(Y_1, U_{2,m}, f(u_1)) = f$ or the formulas two a number by $(W)^* W_{2,m}^*, re_{1,2}^*$. The
it is any to see Wt the lineary relation for some 0 and 0
 k is a sole of a proof of 4 form T
is non-particles indult, we can devolve $b = (r_1^*, r_2^*, r_1^*, r_2^*)$, check let $f(u_1, u_2, \dots, f(u_n))$ of in T , and both
subs the computable, or dusther there exist $j, k \in i$ such that 4^* and
 k is a wole of a proof of 4^* for 1^*
is non-particles indult, we can devolve $b = (r_1^*, r_2^*, r_1^*, r_2^*)$, there W_1
and check whether each r_2^* is in Axiom (apple) of in T , and both
subs the computable, or dusther there exist $j, k \in i$ such that 4^* is obtained from 0^* the function.
Proof $r(u, b)$ is computable, then froot $r(r_1, r_2^*)$ is computable, in perform
 r_1 is formed in 0^* and 1^* is marked T_{ark} . To make here there
there is the there 1^* is a such that for all $a, both$
 r_1 is constrained. In 0^* is computable, the marked T_{ark} .
Thus, let froot r_1 is a next and T_{ark} . Formula such that for all $a, both$
 r_1 is r_1 in r_2 .
Finally, let from r_1 is r_2 if r_2 is some r_1 is non-particle.
 $N \models \frac{Prover blar}{r_1}(u_1)$ if $a = r_2^*$ for some r_2 is some for the formula Y
and $T \models 9$.

Gödel's Incompletencen. Let
$$\sigma := (0, s, t, \cdot)$$
 and $N := (IN, 0, s, t, \cdot)$. Then every computable subtressory $T \subseteq Th(N)$ is incomplete. In particular, PA is incomplete.

Roof 1 of boild tumpletuess (like's hadron). Let TS The (N) be a superbolic substances
so there is an explanded Tork-formula Provabler (x) as above. By the
fixed point lemana, there is a Fight-section
$$T_T$$
, culled the Godd sections to T_T ,
such that (M) $\mathbb{N} \models (T_T < > -Provabler (T_T/x))$. We show NA $T_T \in Th(M)$, i.e. $M \notin T_T$
but $T \not\in T_T$, here T is incomplete. Note:
 $T + T_T$ (\Rightarrow there is b $\in \mathbb{N}$ such that Proof (T_T , b) holds
 $(\ge N \models Provabler (T_T'x'))$
(by (M)) $(\ge M \not\notin T_T)$
 $\Rightarrow T \not\in T_T$.
Due contradiction than the $T \not\in T_T$ is $\mathbb{N} \models -Provabler (T_T'x)$ because
 $\mathbb{N} \notin T_T$ by (\mathfrak{K}). Thus, T is incomplete.
 $\mathbb{N} \notin T_T$ by (\mathfrak{K}). Thus, T is incomplete.
 $\mathbb{N} \notin T_T$ by (\mathfrak{K}). Thus, T is incomplete.
 $\mathbb{N} \notin \mathbb{N}$ for each scalar sections (from Taryki's theorem). If there were a completable
and implete $T \subseteq Th(M)$, then by impletered.
 $\mathbb{N} \notin Provabler (T_T'x')$ if $f \notin \mathbb{C}$. The M ,
 $\mathbb{N} \notin Provabler (T_T'x')$ if $f \notin \mathbb{C}$. The M ,
i.e. creth-efficient, out of \mathbb{N} to \mathbb{N} is theorem.
Quine (a program that prints its own cold).
Here is a program that's used a Quine bet will give us an idea on here
to write a Quine.

Not Quile Quine ()

$$x := {}^{k} Bauach-Tarski x := {}^{m}; Bauach-Tarski x := {}^{m}Bauach-Tarski x := {}^{m}};$$

$$for (i=0, i < longth(k); i:=id)$$

$$for (i=0, i < longth(k); i:=id)$$

$$for (x[i]);$$

$$if (i > 1 \land x[i-i) = {}^{m} \land x > i > i = {}^{m};$$

$$for (i < 1);$$

$$for (x);$$

```
Quine()
   {
         x := "Quine()
                      {
                                      x := ;
                                      for (i := 0; i < \text{length}(x); i := i + 1)
                                      {
                                         Print(x[i]);
if(i \ge 1 \land x[i-1] = 'x' \land x[i] = ':=')
                                         {
                                           Print(''');
Print(x);
Print(''');
                                         }
                                      }
                     }"
            for (i := 0; i < \text{length}(x); i := i + 1)
             {
               Print (x[i]);
if (i \ge 1 \land x[i-1] = 'x' \land x[i] = ':=')
                {
                  Print ('''');
Print (x);
Print ('''');
               }
             }
        }
```